f08 — Least-squares and Eigenvalue Problems (LAPACK) f08bec

NAG C Library Function Document

nag_dgeqpf (f08bec)

1 Purpose

nag_dgeqpf (f08bec) computes the QR factorization, with column pivoting, of a real m by n matrix.

2 Specification

#include <nag.h>
#include <nagf08.h>

void nag_dgeqpf (Nag_OrderType order, Integer m, Integer n, double al],
Integer pda, Integer jpvt[], double tau[], NagError *fail)

3 Description

nag_dgeqpf (f08bec) forms the QR factorization, with column pivoting, of an arbitrary rectangular real m

by n matrix.
R
AP = Q(O)’

where R is an n by n upper triangular matrix, Q is an m by m orthogonal matrix and P is an n by n
permutation matrix. It is sometimes more convenient to write the factorization as

AP = (0, Qz)<§>,

If m > n, the factorization is given by:

which reduces to
AP = Q\R,
where Q, consists of the first n columns of O, and O, the remaining m — n columns.
If m < n, R is trapezoidal, and the factorization can be written
AP = Q(R, Ry),
where R; is upper triangular and R, is rectangular.

The matrix Q is not formed explicitly but is represented as a product of min(m,n) elementary reflectors
(see the fO8 Chapter Introduction for details). Functions are provided to work with Q in this representation
(see Section).

Note also that for any k£ < n, the information returned in the first £ columns of the array a represents a OR
factorization of the first k& columns of the permuted matrix 4P.

The function allows specified columns of 4 to be moved to the leading columns of AP at the start of the
factorization and fixed there. The remaining columns are free to be interchanged so that at the ith stage the
pivot column is chosen to be the column which maximizes the 2-norm of elements i to m over columns i
to n.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

[NP3660/8] f08bec.

f08bec NAG C Library Manual

5 Arguments
1: order — Nag OrderType Input

On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this argument.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

2: m — Integer Input
On entry: m, the number of rows of the matrix 4.

Constraint: m > 0.

3: n — Integer Input
On entry: n, the number of columns of the matrix A.

Constraint: n > 0.

4: a[dim] — double Input/Output
Note: the dimension, dim, of the array a must be at least

max(1,pda x n) when order = Nag_ColMajor;
max(1,pda x m) when order = Nag_RowMajor.

If order = Nag_ColMajor, the (i,/)th element of the matrix A is stored in a[(j — 1) x pda +i — 1].
If order = Nag_RowMajor, the (i,j)th element of the matrix 4 is stored in a[(i — 1) x pda +; — 1].
On entry: the m by n matrix A.

On exit: if m > n, the elements below the diagonal are overwritten by details of the orthogonal
matrix Q and the upper triangle is overwritten by the corresponding elements of the n by n upper
triangular matrix R.

If m < n, the strictly lower triangular part is overwritten by details of the orthogonal matrix O and
the remaining elements are overwritten by the corresponding elements of the m by n upper
trapezoidal matrix R.

5: pda — Integer Input
On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array a.
Constraints:

if order = Nag_ColMajor, pda > max(1, m);
if order = Nag_RowMajor, pda > max(1,n).

6: jpvt[dim] — Integer Input/Output
Note: the dimension, dim, of the array jpvt must be at least max(1,n).

On entry: if jpvt[i] # 0, then the ith column of A4 is moved to the beginning of AP before the
decomposition is computed and is fixed in place during the computation. Otherwise, the ith column
of A is a free column (i.e., one which may be interchanged during the computation with any other
free column).

On exit: details of the permutation matrix P. More precisely, if jpvt[i — 1] = k, then the kth column
of 4 is moved to become the ith column of AP; in other words, the columns of AP are the columns
of A4 in the order jpvt[0],jpvt[l],...,jpvt[n — 1].

f08bec.2 [NP3660/8]

f08 — Least-squares and Eigenvalue Problems (LAPACK) f08bec

7: tau[dim| — double Output
Note: the dimension, dim, of the array tau must be at least max(1l, min(m,n)).

On exit: further details of the orthogonal matrix Q.

8: fail — NagError * Input/Output
The NAG error argument (see Section 2.6 of the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_BAD_PARAM

On entry, argument (value) had an illegal value.

NE_INT

On entry, m = (value).
Constraint: m > 0.

On entry, n = (value).
Constraint: n > 0.

On entry, pda = (value).
Constraint: pda > 0.

NE_INT 2

On entry, pda = (value), m = (value).
Constraint: pda > max(1, m).

On entry, pda = (value), n = {value).
Constraint: pda > max(1,n).

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy
The computed factorization is the exact factorization of a nearby matrix (4 + E), where
IE]l, = O(e)]l

and € is the machine precision.

8 Further Comments

The total number of floating-point operations is approximately %n2(3m —n) if m>n or %mz(Sn —m) if

m < n.

To form the orthogonal matrix Q this function may be followed by a call to nag dorgqr (f08afc):
nag_dorggr (order,m,m,MIN(m,n),&a,pda,tau,&fail)

but note that the second dimension of the array a must be at least m, which may be larger than was
required by nag_dgeqpf (f08bec).

[NP3660/8] f08bec.3

f08bec NAG C Library Manual

When m > n, it is often only the first » columns of Q that are required, and they may be formed by the
call:

nag_dorgqr (order,m,n,n,&a,pda,tau,&fail)

To apply Q to an arbitrary real rectangular matrix C, this function may be followed by a call to
nag_dormgr (f08agc). For example,

nag_dormgr (order,Nag_LeftSide,Nag_Trans,m,p,MIN(m,n),&a,pda,tau,
+ &c,pdc,&fail)

forms C = Q' C, where C is m by p.
To compute a QR factorization without column pivoting, use nag_dgeqrf (f08aec).

The complex analogue of this function is nag zgeqpf (fO8bsc).

9 Example
To find the basic solutions for the linear least-squares problems
minimize |[|4x; — b|,, i=1,2

where b, and b, are the columns of the matrix B,

—-0.09 0.14 -0.46 0.68 1.29 —-0.01 —-0.04

-156 020 0.29 1.09 0.51 0.04 —-0.03

4 —1.48 —-0.43 0.89 —-0.71 —-0.96 and B — 0.05 0.01
-1.09 084 077 211 -127 —-0.03 —-0.02

0.08 0.55 -1.13 0.14 1.74 0.02 0.05

-1.59 -0.72 1.06 124 034 —-0.06 0.07

Here A is approximately rank-deficient, and hence it is preferable to use nag_dgeqpf (f08bec) rather than
nag_dgeqrf (f08aec).

9.1 Program Text
/* nag_dgeqpf (f08bec) Example Program.

* Copyright 2001 Numerical Algorithms Group.

* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf07.h>
#include <nagf08.h>
#include <nagfl6.h>
#include <nagx04.h>

int main(void)
{
/* Scalars */
double tol;
Integer i, j, jpvt_len, k, m, n, nrhs;
Integer pda, pdb, pdx, tau_len;
Integer exit_status=0;
NagError fail;
Nag_OrderType order;
/* Arrays */
double *a=0, *b=0, *tau=0, *x=0;
Integer *jpvt=0;

#ifdef NAG_COLUMN_MAJOR

#define A(I,J) al(J-1)*pda + I - 1]
#define B(I,J) b[(J-1)*pdb + I - 1]
#define X(I,J) x[(J-1)#*pdx + I - 1]

f08bec.4 [NP3660/8]

f08 — Least-squares and Eigenvalue Problems (LAPACK) f08bec

order = Nag_ColMajor;
#else
#define A(I,J) al[(I-1)*pda + J - 1]
#define B(I,J) b[(I-1)*pdb + J - 1]
#define X(I,J) x[(I-1)*pdx + J - 1]
order = Nag_RowMajor;
#endif

INIT_FAIL(fail);
Vprintf ("nag_dgegpf (f08bec) Example Program Results\n\n");

/* Skip heading in data file */

Vscanf ("s*[*\n] ");

Vscanf ("%$1d%1d%1d%*["\n] ", &m, &n, &nrhs);
#ifdef NAG_COLUMN_MAJOR

pda = m;

pdb = m;

pdx = m;
#else

pda = n;

pdb = nrhs;

pdx = nrhs;
#endif

tau_len = MIN(m,n);
jpvt_len = n;

/* Allocate memory */

if (!(a = NAG_ALLOC(m * n, double)) ||
b = NAG_ALLOC(m * nrhs, double)) |
tau = NAG_ALLOC(tau_len, double)) |

x = NAG_ALLOC(m * nrhs, double)) ||

! (jpvt = NAG_ALLOC(jpvt_len, Integer)))

{
Vprintf ("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Read A and B from data file =*/
for (i = 1; 1 <= m; ++1)
{
for (j = 1; j <= n; ++3j)
Vscanf ("$1f", &A(i,3));

}
Vscanf ("$*[*\n] ");
for (i = 1; i <= m; ++1i)

{

for (j = 1; j <= nrhs; ++j)
Vscanf ("$1f", &B(i,3));

}

Vscanf ("s*[*\n] ");

/* Initialize JPVT to be zero so that all columns are free */
/* nag_iload (fledbc).
* Broadcast scalar into integer vector
*
/
nag_iload(n, 0, jpvt, 1, &fail);
/* Compute the QR factorization of A =*/
/* nag_dgeqgpf (f08bec).
* QR factorization of real general rectangular matrix with
* column pivoting
*/
nag_dgeqgpf (order, m, n, a, pda, jpvt, tau, &fail);
if (fail.code != NE_NOERROR)
{
Vprintf ("Error from nag_dgegpf (f08bec).\n%s\n", fail.message) ;
exit_status = 1;
goto END;
}

/* Choose TOL to reflect the relative accuracy of the input data =*/

[NP3660/8] f08bec.5

f08bec NAG C Library Manual

tol = 0.01;

/* Determine which columns of R to use */
for (k = 1; k <= n; ++k)

{
if (ABS(A(k, k)) <= tol * ABS(A(1, 1)))
break;
}
__k,.

/* Compute C = (Q*xT)*B, storing the result in B */

/* nag_dormgr (f08agc).
* Apply orthogonal transformation determined by nag_dgeqrf
* (f08aec) or nag_dgeqgpf (£08bec)
*/
nag_dormqgr (order, Nag_LeftSide, Nag_Trans, m, nrhs, n, a, pda,
tau, b, pdb, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from nag_dormgr (£08agc).\n%s\n", fail.message) ;
exit_status = 1;
goto END;
}
/* Compute least-squares solution by backsubstitution in R*B = C */

/* nag_dtrtrs (£07tec).
* Solution of real triangular system of linear equations,
* multiple right-hand sides
*/
nag_dtrtrs(order, Nag_Upper, Nag_NoTrans, Nag_NonUnitDiag, k, nrhs,
a, pda, b, pdb, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from nag_dtrtrs (£f07tec) .\n%s\n", fail.message);
exit_status = 1;
goto END;
}
for (1 =k + 1; 1 <= n; ++1)
{
for (j = 1; j <= nrhs; ++3j)
B(i,j) = 0.0;
}

/* Unscramble the least-squares solution stored in B */
for (i = 1; i <= n; ++i)
{
for (j = 1; j <= nrhs; ++j)
X(jpvtl[i - 11, j) = B(i, J);
}

/* Print least-squares solution */
/* nag_gen_real_mat_print (xO4cac).
* Print real general matrix (easy-to-use)

*/
nag_gen_real_mat_print(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, nrhs, x,
pdx, "Least-squares solution", 0, &fail);
if (fail.code != NE_NOERROR)
{

Vprintf ("Error from nag_gen_real mat_print (x0O4cac).\n%s\n",
fail.message) ;

exit_status = 1;
goto END;
3
END:
if (a) NAG_FREE(a);
if (b) NAG_FREE(b);
if (tau) NAG_FREE (tau);
if (x) NAG_FREE(x);
if (jpvt) NAG_FREE (jpvt);

f08bec.6 [NP3660/8]

f08 — Least-squares and Eigenvalue Problems (LAPACK)

return exit_status;

}

9.2 Program Data
nag_dgeqgpf (£08bec) Example Program Data

6 5 2 :Values of M, N and NRHS
-0.09 0.14 -0.46 0.68 1.29

-1.56 0.20 0.29 1.09 0.51

-1.48 -0.43 0.89 -0.71 -0.96

-1.09 0.84 0.77 2.11 -1.27

0.08 0.55 =-1.13 0.14 1.74

-1.59 -0.72 1.06 1.24 0.34 :End of matrix A

-0.01 -0.04

0.04 -0.03

0.05 0.01
-0.03 -0.02

0.02 0.05

-0.006 0.07 :End of matrix B

9.3 Program Results
nag_dgegpf (f08bec) Example Program Results

Least-squares solution

1 2
-0.0370 -0.0044
0.0647 -0.0335
.0000 0.0000
-0.0515 0.0018
0.0066 0.0102

ubd wh R
(@)

f08bec

[NP3660/8]

f08bec.7 (last)

	f08bec
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Arguments
	order
	m
	n
	a
	pda
	jpvt
	tau
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INT
	NE_INT_2
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

